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Die während des Arbeitsvorganges gewährte Unterstützung einschließlich signifikanter Betreuungshinweise
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Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird.

(Unterschrift) (Ort, Datum)





Abstract

The idea of quantifying the gap between the social optimum and game equilibria that is key for the design

of efficient laws led to several research results in the recent past. The price of anarchy quantifies the

loss of efficiency due to non-cooperation. It was introduced in 2004 and has been applied to both static

and dynamic games since then. The price of information captures the different outcomes of games under

different information structures and the price of cooperation measures the benefit or loss of a player due

to altruistic behavior. Both indices were proposed for differential games in 2011.

In this thesis, we argue that the price of cooperation is hardly tractable even for very simple differential

games. As an alternative we introduce the simple price of cooperation that measures the benefit or loss

of a player due to altruistic behavior when he cannot observe the actions taken by the other players. For

this index we are able to deduced several (tight) bounds for a variety of scalar linear quadratic differential

games with 2 and N players, respectively.

Additionally we discuss errors occurring in some proofs of a recent publication on the prices of anarchy,

information and cooperation and point out the consequences of theses errors for some of the main results

of the correspondent paper.

In summary we improve the methods to measure the effects of cooperation and information in a dynamic

setting. As cooperation, information and altruistic behavior are key concepts for the law, we think that

our thesis provides a valuable contribution to the theory of law.

i



ii



Zusammenfassung

Die Idee der Quantifizierung der Lücke zwischen sozialem Optimum und Gleichgewichtslösungen von

Spielen ist von besonderer Relevanz für den Entwurf von effizienten Gesetzen und führte zu etlichen

Forschungsergebnissen in der jüngeren Vergangenheit. Der Preis der Anarchie quantifiziert den Verlust

von Effizienz auf Grund von fehlender Kooperation. Er wurde 2004 in der Literatur eingeführt und seitdem

auf statische und dynamische Spiele angewandt. Der Preis der Information vergleicht die verschiedenen

Ergebnisse von Spielen unter verschiedenen Informationsstrukturen und der Preis der Kooperation misst

den Gewinn oder Verlust eines Spielers auf Grund von altruistischem Verhalten. Beide Kennzahlen wurden

2011 im Kontext von Differentialspielen vorgeschlagen.

In dieser Arbeit argumentieren wir, dass der Preis der Kooperation sogar für sehr einfache Differential-

spiele kaum explizit berechenbar ist. Als eine Alternative führen wir den einfachen Preis der Kooperation

ein, welcher den Gewinn oder Verlust eines Spielers auf Grund von altruistischem Verhalten misst, wenn

man zusätzlich annimmt, dass dieser Spieler die von den anderen Spielern vorgenommenen Handlungen

nicht beobachten kann. Für diese Kennzahl gelingt es uns eine Reihe von (scharfen) Schranken für eine

Vielzahl von skalaren linear-quadratischen Differentialspielen mit 2 und N Spielern abzuleiten.

Zusätzlich zeigen wir Fehler in einigen Beweisen aus einer kürzlich veröffentlichten Forschungsarbeit

über die Preise der Anarchie, der Information und der Kooperation auf. Wir diskutieren dabei auch die

aus diesen Fehlern resultierenden Konsequenzen für einige der Hauptresultate des entsprechenden Papers.

Zusammenfassend verbessern wir die Methoden um Effekte von Kooperation und Information in dy-

namischen Situationen zu messen. Da Kooperation, Information und altruistisches Verhalten zentrale

Konzepte im Bereich der Rechtswissenschaften sind, glauben wir, dass die vorliegende Arbeit einen

wertvollen Beitrag für diesen Bereich liefert.
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Chapter 1

Introduction

Game theory is a study of strategic behavior and strategic decision making. Strategic behavior arises

whenever two or more individuals interact and each individuals’s decision influences the decisions (and the

current situation and outcome) of all the individuals involved. More formally put, game theory is “the

study of mathematical models of conflict and cooperation between intelligent rational decision-makers”

[19]. Modern game theory began with John von Neumann’s proof of the existence of mixed-strategy

equilibria in two-person zero-sum games where he used Brouwer’s fixed-point theorem on continuous

mappings into compact convex sets, which became a standard method in game theory and mathematical

economics [25, 26]. In 1950 John Nash proposed (in his dissertation) a criterion for mutual consistency

of players’ strategies, known as Nash equilibrium, applicable to a wider variety of games (N -person non-

cooperative nonzero-sum games) than the criterion proposed by von Neumann [20]. In the 1960s, Reinhard

Selten further refined the Nash equilibrium concept by introducing subgame perfect equilibria [23] and

John Harsanyi developed the concepts of complete information and Bayesian games [15]. Nash, Selten and

Harsanyi became Economics Nobel Laureates in 1994 for their contributions to economic game theory.

Today game theory has become a very large, diverse and active field of research. It is mainly used in

economics, political science, and psychology, but has also many applications in biology and law.

Laws affect the way people behave. Hence laws are often of importance in situations in which strategic

behavior occurs in order to influence the individuals involved in an intended way (e.g. such that the

outcome of the situation is a desired one in terms of common welfare). There exist several articles and

books stressing the importance of game theory for the law as formal tool that can offer important insights

in the way laws should and should not be formulated [2, 3, 7, 18, 21]. These books and articles also point

out various fields of application, among them tort theory, contract law, antitrust law, bankruptcy law,

employment law, and labor law.

It is not the aim of this thesis to give an introduction to or overview of game theory and law. For this

propose we refer to [7, 10, 13, 17, 21, 26] and further references therein. What we aim for is to present

corrections and extensions to one particular current research topic that belongs to the field “Game Theory

and Law”. We will take the current research paper “Prices of Anarchy, Information, and Cooperation

in Differential Games” by Başar and Zhu [8], point out some errors and several typos therein and then

extend their work by introducing the “simple price of cooperation (sPoC)” and deducing a variety of

bounds on the sPoC for several differential games. For an introduction to and good overview of the theory

of differential (and difference) games we refer to [6, 9, 12].

The price of anarchy (PoA) quantifies the loss of efficiency due to non-cooperation. It has been widely

used in static games [16, 22] and was applied to dynamic games in [8] for the first time. Additionally Başar

and Zhu [8] introduced the price of information (PoI) that captures the different outcomes of games under

different information structures and the price of cooperation (PoC) that measures the benefit or loss of a

player due to altruistic behavior. The sPoC is a variant of the PoC where the altruistic players cannot

1



2 CHAPTER 1. INTRODUCTION

observe the actions taken by the other players. Hence the cooperating players only take into account the

costs of the other players that result from their state variables (and ignore the costs resulting from the

control variables of the other players). Contrary to the PoC that is hardly tractable even for very simple

differential games we can deduce several (tight) bounds of the sPoC for a variety of scalar linear quadratic

differential games with 2 and N players, respectively. Cooperation, information and altruistic behavior

are key concepts for the law and hence improving the methods to measure these quantities in terms of the

PoA, the PoI and the sPoC in a dynamic setting is a worthwhile contribution to the theory of law.

This thesis will be handed in to the department of “Law and Economics”. Recently Richard H.

McAdams complained in his paper [18] that “legal scholars are nearly obsessed with the Prisoners’

Dilemma, mentioning the game in a staggering number of law review articles (over three thousand),

while virtually ignoring other equally simple games offering equally sharp insights into legal problems.

Ones has to guess that the former obsession contributes to the latter neglect.” In this spirit we hope that

our thesis will help to extend the tools considered for legal analysis to simple differential games because

we believe that in the long run game theory could transform legal theory as it has transformed economic

theory.

The structure of the thesis is as follows. In Section 2 we provide some additional motivation for dealing

with the prices of anarchy, information, and cooperation and recall the definitions and notation used in

[8]. In Section 3 we discuss errors occurring in some proofs in [8] and point out the consequences of theses

errors for the main results of the corresponding paper. In the end of that section we additionally state

a list of typos in [8]. Finally we introduce the sPoC in Section 4. In this main section of the thesis we

deduce several (tight) bounds for the sPoC for a variety of scalar linear quadratic differential games with

2 and N players, respectively.



Chapter 2

Motivation and General Problem

Formulation

It is well known that the non-cooperative Nash equilibrium in nonzero-sum games (even if it is unique)

is inefficient in general [11]. Thus all players could possibly lower their costs simultaneously through a

cooperative behavior. Often rules and laws are designed to invoke such a cooperative behavior. In dynamic

and differential games that are a special class of non-cooperative nonzero-sum games information is (like

in the area of law) a crucial issue. In this kind of games additional information can help but also (and

that’s counter-intuitive at the outset) hurt (for details see [4, 5, 6]). Hence one question of interest is to

measure the extent of inefficiency or the effect of information in differential games (e.g. to decide whether

it is pays off to install particular legal rules). The PoA was introduced in [22] for quantifying the loss of

efficiency due to competition in traffic routing games. It has been shown that the PoA can be bounded

by a constant for certain types of static games. Hence the players achieve at least some level of efficiency

despite being suboptimal (for details see [22] and [16]).

The idea of quantifying the gap between the social optimum and game equilibria led to several research

results in the same vein. The price of simplicity [24], the price of uncertainty [14] and the price of leadership

[27] were proposed for different types of static games in the field of communication networks.

In [8] the PoA was generalized to differential games (for an exact definition see below). Furthermore

they introduced the PoI that compares the equilibrium costs under different information structures and

the PoC that measures benefit or loss of a player compared to his base Nash equilibrium payoff due to

cooperation (again exact definitions are given below).

In the following we introduce the general nonzero-sum differential games framework (that is well devel-

oped, see e.g. [6, 9, 12]) along with the Nash equilibrium solution and the prices of anarchy, information,

and cooperation. We use exactly the same notation as in [8] in order to facilitate the review of some results

obtained in [8] in Section 3.

Let N = {1, 2, . . . , N} be the set of players, and [0, T 〉 be the time interval of interest. At each time

instant t ∈ [t, T 〉, each player, say Player i, chooses an mi-dimensional control value (action) ui(t) from

his set of feasible control values Ui ⊂ Rmi . The state variable x is of dimension N , and takes values in

Rn. We also make the standard assumption that ui(·), i ∈ mathcalN is piecewise continuous and x(·)
is piecewise continuously differentiable on t ∈ [t, T 〉. Due to these assumption the evolution of the state

variable can be defined according to the differential equation

ẋ(t) = f(x(t), u1(t), . . . , uN (t), t), x(0) = x0,

where x0 ∈ R is the initial value of the state. Furthermore the system dynamics f(·) : Ω→ Rn is defined

3



4 CHAPTER 2. MOTIVATION AND GENERAL PROBLEM FORMULATION

on the set

Ω = {(x, u1, . . . , uN , t) | x ∈ Rn, t ∈ [0, T 〉, ui ∈ Ui, i ∈ N},

as a jointly piecewise continuous function which is Lipschitz in x, and also possibly Lipschitz in the ui’s,

depending on whether the underlying information structure (IS) is an open loop or closed loop feedback.

We consider two different ISs: Open Loop (OL), where the controls are just functions of the time t

and closed-loop state-feedback (FB), where the controls are allowed to be functions of the current value

of the state and of time: ui(t) = γi(t;x(t)). In the latter case, γi : [0, T 〉×Rn → Ui is known as the policy

variable of player i. We require each γi(·; ·) to be jointly piecewise continuous in both arguments and

additionally Lipschitz in the state variable. We denote the class of all such mappings by Γi. We further

require that f be Lipschitz not only in x but also in the controls such that the differential equation for

the state

ẋ(t) = f(x(t), γ1(t;x(t)), . . . , γN (t;x(t)), t), x(0) = x0,

admits a unique piecewise continuously differentiable solution for each γi ∈ Gammai, i ∈ N . To capture

the OL IS as a special case of this notation, we write γηi ∈ Γηi , where η stands for the underlying IS.

All players are cost-minimizers. Let Fi : Ω → R be player i’s instantaneous (running) cost function,

and Si : Rn → R the terminal value function. Then the objective function of player i can be given (in

accordance with the definitions above) by

Li(u) =

∫ T

0

Fi(x(t), u1(t), . . . , uN (t), t)dt+ Si(x(T )),

when T <∞, and

Li(u) =

∫ ∞
0

Fi(x(t), u1(t), . . . , uN (t), t)dt,

when T = ∞ and u := {u1, . . . , uN}. Substituting ui(t) = γi(t;x(t)) in the cost function above, we

obtain the normal or strategic form of the differential game (DG). Let us denote this new cost function

representation by Ji, i ∈ N , which we write more explicitly as Ji(γ
η), where γη := {γη1 , . . . , γ

η
N} ∈

Gammaη := Γη1 × . . .×Gamma
η
N .

Let γη−i := (γη1 , . . . , γ
η
i−1, γ

η
i+1, . . . , γ

η
N ), then when we fix γη−i to γη∗−i, player i is confronted with the

following dynamic optimization (optimal control) problem:

min
γi∈Γηi

Ji(γi, γ
η∗
−i) :=

∫ T

0

Fi(x, γi(η), γη∗−i(η), t)dt+ Si(x(T ))

s.t. ẋ(t) = f(x, γi(η), γη∗−i(η), t), x(0) = x0.

(OCi)

For T =∞ we just set Si ≡ 0. If we denote the solution to (OCi) by γeta∗i and carry out the optimization

for each i ∈ N , then we derive a Nash equilibrium for the given IS η. We summarize this in a more precise

way in the following definition.

Definition 1 (η-Nash equilibrium). For a DG with IS η, the policy N -tuple {γη∗i , i ∈ N} =: γη∗ is an

η-Nash equilibrium if, for each i ∈ N , γη∗i solves the optimal control problem (OCi). Let Γη∗ be the set of

all η-Nash equilibria, as a subset of Γη.

Now let Jη∗i , i ∈ N , denote the achieved values of the objective functions of the players under a

particular η-Nash equilibrium γη∗, and a corresponding total cost achieved (as a convex combination of

the individual costs) be given by Jη∗µ =
∑
i∈N µiJ

η∗
i , where µi is a positive weighting factor on player

i’s cost, satisfying the normalization condition
∑
i∈N µi = 1. We assume, without loss of generality, that

Jη∗i > 0 for all i ∈ N , and hence Jeta∗µ > 0.
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Next we consider the case of full coordination as a benchmark. Hence we assume that all players agree

on minimizing a single objective function which is a convex combination of the individual cost functions.

The corresponding underlying optimization problem is the following optimal control problem:

min
γ∈Γη

N∑
i=1

µi

{∫ T

0

Fi(x, γ(η), t)dt+ Si(x(T ))

}
s.t. ẋ(t) = f(x, γ(η), t), x(0) = x0.

(COC)

where the optimization could also be carried out with respect to u, since the problem is deterministic and

not strategic. Thus, the optimal value of (COC) is independent of the IS, which we denote by J◦µ, and the

corresponding optimal control by u◦ = [u◦1, . . . , u
◦
N ]. Note that we necessarily have 0 < J◦µ ≤ Jη∗µ for any

γη∗ ∈ Γη∗. Now we have introduce all the necessary notation to give a precise definition of the PoA.

Definition 2 (Price of Anarchy (PoA)). Consider an N -person DG as above and its (COC) with J◦µ > 0.

The price of anarchy for the DG is

ρηN,µ,T = max
γη∗∈Γη∗

Jη∗µ
J◦µ

,

i.e., the worst-case ratio of the total game cost to the optimum social cost.

Note that the PoA as defined above is lower-bounded by 1. Next we give a precise definition of the

PoI.

Definition 3 (Price of Information (PoI)). Let η1 and η2 be two ISs. Consider two N -person DGs which

differ only in terms of their ISs, with game 1 having IS η1, and game 2 having η2. Let the values of a

particular µ convex combination of the objective functions be Jη1∗
µ and Jη2∗

µ , respectively, achieved under

the Nash equilibria γη1∗ and γη2∗. The price of information between the two ISs (under cost minimization)

is given by

χη2
η1

(µ) = max
γη

∗
2∈Γη

∗
2

J
η∗2
µ / max

γη
∗
1∈Γη

∗
1

J
η∗1
µ

The PoI compares the worst-case costs under two different ISs for the same convex combination, and

quantifies the relative loss or gain when the DG is played under a different IS. Finally note that the PoA

and the PoI are connected as follows:

χeta2
η1

(µ) =
ρη2

N,µ,T

ρη1

N,µ,T

.

The analysis of the PoA and the PoI is very difficult for general DGs as there often exists more than one

Nash equilibrium, which shows strong dependence on the underlying IS. However the analysis is tractable

for specific game structures like scalar linear quadratic DGs with OL or FB IS. This kind of games has

many applications in economics and communication networks [1, 9]. In this special class of DGs the players

are not interested in the control actions pursued by the other players. For such scalar DGs it is possible

to obtain some analytic bounds for the prices of anarchy, information and cooperation. Hence let finally

the infinite-horizon scalar N -person linear quadratic DG be defined as

Li(u) =

∫ ∞
0

[qix
2(t) + riu

2
i (t)]dt, i ∈ N , (2.1)

ẋ(t) = ax(t) +

N∑
i=1

biui(t), x(0) = x0, (2.2)

where a, bi 6= 0, qi > 0, ri > 0, x0 6= 0 are scalar quantities.
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Chapter 3

Some Corrections for the Bounds on

the Prices of Anarchy and

Information

In this section we want to point out errors made in the proofs of two results (Corollary 1 and Theorem

6) in [8]. While it is quite easy to correct the bounds in Corollary 1, we cannot give any mended results

associated to Theorem 6. Thus we will discuss shortly the consequences of the faultiness of Theorem 6 for

two further results in [8] (Theorem 8 and Corollary 3) building on it. Finally we will give a list of typos

in [8].

Let us start with introducing some variables that are used in Corollary 1 and Theorem 6 (in the order

of their first appearance below):

σmax = max
1≤i≤N

σi, Ω ⊂ N , nΩ = |Ω|, s• =

N∑
i=1

si
minj∈N sj

, µsmax = max
i∈N

µi
si
,

q̄ =

N∑
i=1

µiqi, µsmin =
N

min
i=1

µi
si
, p̄ =

N∑
i=1

pj , σi = siqi, si =
b2i
ri
, σ̄ =

N∑
i=1

σi.

Corollary 1. The first error occurs in the proof of Corollary 1 on page 61, where an upper bound for

the numerator of the price of anarchy ρFBµ is deduced. The second to last equation is given by

%(M) + a ≤ max

{
max

1≤nΩ≤N

(2a+ σmax − 1)nΩ +N

2nΩ − 1
, 2a+N − 1

}
≤ max {2a+N + σmax − 1, 2a+N − 1}
≤ 2a+N + σmax − 1.

(3.1)

As RS1 = N + a (see also M2 and M3 from the application in flow control on page 67 in [8]), the first line

of (3.1) has to be corrected to

%(M) + a ≤ max

{
max

1≤nΩ≤N

(2a+ σmax − 1)nΩ +N

2nΩ − 1
, 2a+N

}
Next it is argued that the second inequality in (3.1) holds because the quantity

(2a+ σmax − 1)nΩ +N

2nΩ − 1
(3.2)

7
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increases with nΩ. But this is only true if

2N < 1− 2a− σmax. (3.3)

holds, otherwise (3.2) decreases for increasing nΩ 6= 0. Condition (3.3) can be obtained from the first

derivation of (3.2) with respect to nΩ that is given by (after some basic simplifications):

1− 2a− σmax − 2N

(2nΩ − 1)2

Now for 1 ≤ nΩ ≤ N (3.2) can be correctly approximated by

max
nΩ∈{1,N}

(2a+ σmax − 1)nΩ +N

2nΩ − 1

≤ max{2a+ σmax − 1 +N, 2a+ σmax} ≤ 2a+ σmax − 1 +N.

In summary the numerator of ρFBµ can be bounded by

%(M) + a ≤ max {2a+N + σmax − 1, 2a+N} ≤ 2a+N + σmax.

This results in corrected upper bounds for the price of anarchy ρFBµ for given µ:

ρFBµ ≤
(

1 +
1

2a
(N + σmax)

)
s•, a 6= 0,

ρFBµ ≤ µsmax√
q̄µsmin

√
N(N + σmax), a = 0.

Theorem 6. There are two errors in the proof of Theorem 6 when approximating the term p̄− a. The

first equation on page 63 is given by

p̄− a =
p̄− a
N − 1

(
N∑
i=1

√
1− σi

(p̄− a)2
+ a

)

=
p̄− a
N − 1

[
Nσ̄

2(p̄− a)2

(
1 +O

(
σmax

2(p̄− a)2

))
+ a

]
.

(3.4)

The first minor error (that has no impact on the overall approximation) appears in the first line of (3.4).

The corrected version of the first line reads

p̄− a =
p̄− a
N − 1

(
N∑
i=1

√
1− σi

(p̄− a)2
+

a

p̄− a

)
. (3.5)

Applying the Taylor series expansion

√
1 + x =

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)2(4n)
xn

= 1 + 1
2x−

1
8x

2 + 1
16x

3 − 5
128x

4 + . . . , |x| ≤ 1.

(3.6)

to (3.5) yields

p̄− a
N − 1

(
N∑
i=1

(
1− σi

2(p̄− a)2
+O

(
σ2
i

(p̄− a)4

))
+

a

p̄− a

)

=
p̄− a
N − 1

(
N − σ̄

2(p̄− a)2
+

N∑
i=1

O

(
σ2
i

(p̄− a)4

)
+

a

p̄− a

)
.

(3.7)
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But now there is no way to obtain the second line of (3.4) from (3.7) independent of the minor error

pointed out in (3.5).

Note that numerical examples like the application in flow control in [8] can give neither support nor

disproof for the results in Theorem 6 as this theorem states asymptotic results.

Consequences. Due to the errors in the proof of Theorem 6, Theorem 8 and Corollary 3 cannot be

maintained. Note that Corollary 3 comprehends another error. It implicitly contains the assumption (by

using the results of Theorem 8) that N is large but makes a statement for small N : “When N ≥ 3, the

open-loop IS yields better total optimal cost; otherwise the FB information does better.” This statement

is even disproved by the price of information χOLFB = 0.9184 for N = 2 from the multiuser rate-based flow

control example on pages 66–68.

Further Typos. Finally in Table 3.1 we give a list of further typos in [8].
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page 57, below equation (12) p := [1, k1, k2, . . . ,
∏N

i=1 ki]
> k := [1, k1, k2, . . . ,

∏N
i=1 ki]

>

page 57, Theorem 2 λ > σmax λ2 > σmax [12, Lemma 8.11]

page 59, line 1 σi ≥ 0 σi > 0

page 59. equation (19) ≥ >

page 60, equation (24) maxk
siki∑N
i=1 sik̂

maxk
∑N

i=1 siki∑N
i=1 sik̂

page 61, middle Gersgorin Gershgorin

page 62, equation (29) 2a
b̄µsmax

≥ 2a
b̄µsmax

=

page 62, Theorem 6 (iii) and (iv) are equal

page 62, equation (30) 1 +O
(

σi
(p̄−a)2

)
1 +O

(
σi

(p̄−a)

)
page 63, below equation (33) σmax � σ σmax � σ̄

page 64, Theorem 7 Ji = k?i x0 Ji = k?i x
2
0 [12, Theorem 7.29]

page 64, equation (38) ki = σi + p2
i /(2si(p̄− a)) ki = (σi + p2

i )/(2si(p̄− a))

page 64, above equation (40) 35 (35)

page 65, below equation (45) (39) (42)

page 65, second to last equation ≥ ≤ 〈x, y〉 ≤ ‖x‖‖y‖
page 68, second equation J∗OL J∗FB
page 68, second equation J∗FB J∗OL

page 68, middle 3
8

5
16

page 70, Table 1, last entry
√

2− 1
N

(
1
2

+ 1
N

) √
2− 1

N

(
1
2

+ 1
2N

)
page 70, equation (55)

√
2− 1

N

(
1
2

+ 1
N

) √
2− 1

N

(
1
2

+ 1
2N

)
page 70, below equation (55) f(N) = 1

N
f(N) = N

page 72, Table 2, first column 1
N

N

page 72, below Table 2 f(N) = 1
N

f(N) = N

Table 3.1: List of typos in [8].



Chapter 4

Bounds for the Price of Cooperation

In this section we deduce bounds for an adapted variant of the price of cooperation for scalar linear

quadratic DGs with OL IS. For simplicity of the exposition we first consider the two-player case and later

on present generalized results for the N-player case.

At first we recall the definition of the price of cooperation proposed in [8]: Let λi := {λji , j ∈ N} be

a set of nonnegative parameters adding up to 1 and let J̃i(γ
η;λi), i ∈ N , be defined by

J̃i(γ
η;λi) :=

N∑
j=1

λjiJj(γ
η), i ∈ N .

Consider the η IS DG with cost functions J̃ ’s, and let Γ̃η be the set of all its η-Nash equilibria. For

γ̃η ∈ Γ̃η, player i achieves an actual cost of Ji(γ̃
η), which may be lower or higher than Jη∗i defined in

Section 2. Note that if λji = µi for all i, j ∈ N , then all players have the same cost function, and every

η-Nash equilibrium solution of the altruistic game is a solution to COC. Now let us give a precise definition

of the PoC.

Definition 4 (Price of Cooperation (PoC)). Consider an N -player DG with a fixed IS η, and with a fixed

set of cooperation vectors λ := {λi, i ∈ N}. Let J̃i, i ∈ N , and Γ̃η be as defined above, and Γη be the set of

all Nash equilibria of the original game. Then, the price of cooperation for player i under the cooperation

scheme λ is given by

νηi (λ) =
maxγ∈Γ̃η Ji(γ)

maxγ∈Γη Ji(γ)
.

For simplicity we assume that player 1 sticks to his objective function (and does not cooperate)

J̃1(γη; λ1) = J1(γη) = L1(u) =

∫ ∞
0

[q1x
2(t) + r1u

2
1(t)]dt, λ1 =

(
1

0

)
,

while player 2 cooperates by placing weight µ on the objective function of player 1, hence λ2 =

(
µ

1− µ

)
, 0 <

µ ≤ 1. The adapted objective function of player 2 is given by

J̃2(γη; λ2) = µJ1(γη) + (1− µ)J2(γη) = µL1(u) + (1− µ)L2(u)

=

∫ ∞
0

[(µq1 + (1− µ)q2]x2(t) + µr1u
2
1(t) + (1− µ)r2u

2
2(t)dt.

But now the control of player 1 is contained in the integrand of the objective function of player 2. Hence

the cooperating player faces a non-standard optimization problem and we are not able to obtain any

explicit bounds on the price of cooperation for either player.

11
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In the following we work with a simpler (but still meaningful) version of the price of cooperation that

allows us to avoid the difficulties described above: Let Ĵi(γ
η;λi), i ∈ N , be defined by

Ĵi(γ
η;λi) :=

∫ ∞
0

 N∑
j=1

λji qj

x2(t) + riu
2
i (t)dt, i ∈ N .

Consider the η IS DG with cost functions Ĵ ’s, and let Γ̂η be the set of all its η-Nash equilibria.

Definition 5 (Simple Price of Cooperation (sPoC)). Consider an N -player scalar DG with a fixed IS η,

fixed parameters p = {ā, b̄i, q̄i, r̄i, i ∈ N}, and with a fixed set of cooperation vectors λ := {λi, i ∈ N}.
Let Ĵi, i ∈ N , and Γ̂η be as defined above, and Γη be the set of all Nash equilibria of the original game.

Then, the simple price of cooperation for player i under the cooperation scheme λ is given by

τηi (λ, p) =
maxγ∈Γ̂η Ji(γ)

maxγ∈Γη Ji(γ)
.

An economic reason for working with the sPoC might e.g. be that the cooperating player does only

observe the state variables of the other players but not their control variables. Note that this assumptions

matches nicely with the fact that in scalar linear quadratic DGs the players are not interested in the

control actions pursued by the other players.

In the remaining of the section we assume that the IS in the entire DG is OL. Hence each player knows

only the value of the initial state of the system. Since the cost runs from zero to infinity, we are interested

in controls that yield finite costs. Accordingly, we restrict the controls of the players to belong to the set

UOL(x0) = {u ∈ L2[0,∞)|Ji(x0, u) <∞, ∀i ∈ N},

where L2[0,∞) is the space of square-integrable functions on [0,∞). Now the following theorem states

that Γη and Γ̂η are singletons for linear quadratic DGs.

Theorem 1 (Open-Loop NE, [6, 8, 12]). Consider the N -person linear quadratic DG in (2.1) and (2.2),

and assume that there exists a unique solution ξ? to the set of equations

0 = 2aξi + qi − ξi

 N∑
j=1

sjξj

 ,

such that a−
∑N
j=1 sjξ

?
j < 0, where si := b2i /ri. Then, the game admits a unique open-loop Nash equilibrium

for every initial state, given by

u?i (t) = − bi
ri
ξ?i exp

a− N∑
j=1

sjξ
?
j

 t

x0.

The optimal cost to player i using u?i is J?i = k?i x
2
0, where k?i is the unique solution to

2

a− N∑
j=1

sjξ
?
j

 ki + qi + si(ξ
?
i )2 = 0,

given by

k?i =
1√

a2 + σ̄

(
qi
2

+
σiqi

2(
√
a2 + σ̄ − a)2

)
.
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If player 2 considers Ĵ2 instead of J̃2 when cooperating, the optimal costs of player 1 are, according to

Theorem 1, J1(γ) = k̂?1x
2
0, γ ∈ Γ̂η, with

k̂?1 =
1√

a2 + σ̂

(
qi
2

+
σiqi

2(
√
a2 + σ̂ − a)2

)
,

σ̂ =
b21q1

r1
+
b22(µq1 + (1− µ)q2)

r2
.

The costs of player 2 cannot be made explicit in general. By applying Theorem 1 we obtain

J2(γ) =

∫ ∞
0

[
q2 +

b22(ξ̂?2)2

r2

]
x2(t)dt

= k̂?2x
2
0 + µ(q2 − q1)

∫ ∞
0

x2(t)dt, γ ∈ Γ̂η.

For q1 6= q2 we further have

J2(γ̂) > J2(γ), γ̂ ∈ Γ̂η, γ ∈ Γη

as γ ∈ Γη is (per definition of the Nash-equilibirum) the cost minimal strategy of player 2 with respect

to his objective function J2 (when player 1 simultaneously minimizes J1). We now capture all this in the

corollary below.

Corollary 2. In a two-player scalar DG with open-loop information structure and

λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, q1 6= q2,

the sPoC is given by

τOL1 (λ, p) =
k̂?1
k?1

=

√
a2 + σ̄

[
(
√
a2 + σ̂ − a)2(

√
a2 + σ̄ − a)2 + σ1(

√
a2 + σ̄ − a)2

]
√
a2 + σ̂

[
(
√
a2 + σ̄ − a)2(

√
a2 + σ̂ − a)2 + σ1(

√
a2 + σ̂ − a)2

] ,
τOL2 (λ, p) =

k̂?2
k?2

+
µ(q2 − q1)

∫∞
0
x2(t)dt

k?2x
2
0

> 1.

Let us state two numerical examples. If player 2 accounts for both cost coefficients of the state value

in the same way (µ = 1
2 ), then the sPoC of player 1 is given by τOL1 (λ, p) = 39−24

√
2

16
√

2(3−
√

8)
≈ 1.303 for

b1 = q1 = r1 = 1, b2 = q2 = r2 = a = 2 and τOL1 (λ, p) = 2
√

3(161−14
√

26−46
√

6+8
√

39√
13(161−22

√
26−30

√
6+8
√

39)
≈ 0.882 for

b1 = q1 = r1 = 2, b2 = q2 = r2 = a = 1.

In the following theorem we show that for a = 0 the sPoC can be expressed in a much simpler way.

Theorem 3. In a two-player scalar DG with open-loop information structure and

a = 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC of player 1 is given by

τOL1 (λ, p) =
(δ + αβ2)1.5(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)1.5
, (4.1)

where

βb1 = b2, β 6= 0, δr1 = r2, δ > 0, αq1 = q2, α > 0. (4.2)



14 CHAPTER 4. BOUNDS FOR THE PRICE OF COOPERATION

Proof. Using the equations (4.2), the variables σ̄ and σ̂ can easily be expressed as

σ̄ =

(
1 +

αβ2

δ

)
σ1, σ̂ =

(
1 +

(α+ µ− αµ)β2

δ

)
σ1. (4.3)

Applying Corollary 2, using (4.3) and doing some basic transformations gives the stated sPoC:

τOL1 (λ, p) =
k̂?1
k?1

=

√
σ̄ [σ̂σ̄ + σ1σ̄]√
σ̂ [σ̂σ̄ + σ1σ̂]

=

1√(
1+

(α+µ−αµ)β2

δ

)
σ1

(
q1
2 + σ1q1

2
(

1+
(α+µ−αµ)β2

δ

)
σ1

)
1√(

1+αβ2

δ

)
σ1

(
q1
2 + σ1q1

2
(

1+αβ2

δ

)
σ1

) =

√
δ + αβ2

δ + (α+ µ− αµ)β2

(δ + αβ2)(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)
.

(4.4)

Hence if player 2 accounts for both cost coefficients of the state value in the same way (µ = 1
2 ), a is

set to 0 and α is set to 2, then the sPoC of player 1 is given by τOL1 (λ, p) =
√

5
4 ·

25
24 ≈ 1.165 for β = δ = 2

and τOL1 (λ, p) =
√

6
5 ·

21
20 ≈ 1.150 for β = δ = 1. If we set α = 1

2 instead, then the sPoC of player 1 is

given by τOL1 (λ, p) =
√

10
11 ·

95
99 ≈ 0.915 for β = δ = 1

2 and τOL1 (λ, p) =
√

6
7 ·

33
35 ≈ 0.873 for β = δ = 1.

Next we deduce simple overall bounds on the sPoC for general scalar DGs. To formulate the according

theorems in a compact way, we introduce another notion.

Definition 6 (Tight Bounds). The bounds a < τOL1 (λ, p) < b on the sPoC of a scalar DG are called tight,

if there exist sets of parameters and cooperation vectors (p1, λ1) and (p2, λ2) such that

τOL1 (λ1, p1)− ε < a,

and

τOL1 (λ2, p2) + ε > b,

hold for any given ε > 0.

In the following theorem we show that
(
σ̄
σ̂

)2
is a tight bound for the sPoC given in Corollary 2.

Theorem 4. In a two-player scalar DGs with open-loop information structure and

λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC for player 1 is bounded by

1 < τOL1 (λ, p) <
( σ̄
σ̂

)2

, α > 1,( σ̄
σ̂

)2

< τOL1 (λ, p) < 1, 0 < α < 1,

(4.5)

and all bounds are tight.
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Proof. With the help of (4.3) we find that σ̄ < σ̂ for α < 1 and σ̄ > σ̂ for α > 1. Let us w.l.o.g. assume

α > 1. (The case 0 < α < 1 can be handled completely analogically.) Using Corollary 2 and σ̄ < σ̂ we

obtain

1 < τOL1 (λ, p) = g(a) · h(a) =: f(a), (4.6)

with

g(a) :=

√
a2 + σ̄√
a2 + σ̂

, (4.7)

h(a) :=
(
√
a2 + σ̂ − a)2(

√
a2 + σ̄ − a)2 + σ1(

√
a2 + σ̄ − a)2

(
√
a2 + σ̄ − a)2(

√
a2 + σ̂ − a)2 + σ1(

√
a2 + σ̂ − a)2

. (4.8)

The limes of f(a) for a→∞ can be deduced as the product

lim
a→∞

g(a) · lim
a→∞

h(a).

For g(a) we clearly have

lim
a→∞

g(a) = 1. (4.9)

With the help of the Taylor series expansion (3.6) we have(√
1 +

x

a2
− 1

)2

=
x̄

4a4
+O

(
1

a6

)
. (4.10)

Using (4.10) we can rewrite h(a) as

h(a) =
σ̄2

4a6σ1 +O
(

1
a8

)
σ̂2

4a6σ1 +O
(

1
a8

) .
Hence

lim
a→∞

h(a) =
( σ̄
σ̂

)2

. (4.11)

Alternatively we could apply L’Hôpital’s rule to h(a) twice to obtain the above result. Now we can combine

(4.9) and (4.11) to

lim
a→∞

f(a) =
( σ̄
σ̂

)2

. (4.12)

Next we examine if f(a)
?
<
(
σ̄
σ̂

)2
holds ∀a ∈ R and 0 < σ̂ < σ̄. Using (4.6)-(4.8) we transform the

inequality in question to

σ̂2
√
a2 + σ̄

[
(
√
a2 + σ̂ − a)2 + σ1

]
(
√
a2 + σ̄ − a)2 ?

<

σ̄2
√
a2 + σ̂

[
(
√
a2 + σ̄ − a)2 + σ1

]
(
√
a2 + σ̂ − a)2.

We further split up the above inequality into two simpler ones:

σ̂2
√
a2 + σ̄

(√
a2 + σ̂ − a

)2 (√
a2 + σ̄ − a

)2 ?
<

σ̄2
√
a2 + σ̂

(√
a2 + σ̄ − a

)2 (√
a2 + σ̂ − a

)2

,

(4.13)
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and

σ1σ̂
2
√
a2 + σ̄

(√
a2 + σ̄ − a

)2 ?
< σ1σ̄

2
√
a2 + σ̂

(√
a2 + σ̂ − a

)2

. (4.14)

Let us first examine (4.13) that simplifies to

σ̂2
√
a2 + σ̄

?
< σ̄2

√
a2 + σ̂. (4.15)

The terms on both sides of the inequality are > 0. Thus we can square it and retain the inequality sign.

Expanding, simplifying and dividing by (σ̄ − σ̂) yields

a2(σ̄2 − σ̂2)(σ̄ + σ̂)
?
> −σ̄σ̂(σ̄2 + σ̄σ̂ + σ̂2), (4.16)

which clearly holds as the left hand side of the inequality is > 0 and the right hand side is < 0. Expanding

and simplifying (4.14) yields

2aσ̄2(a2 + σ̂)− 2aσ̂2(a2 + σ̄)
?
< σ̄2(2a2 + σ̂)

√
a2 + σ̂ − σ̂2

(
2a2 + σ̂

)√
a2 + σ̄.

The terms on both sides of the inequality are > 0. Squaring, expanding and simplifying the resulting

expressions gives

2(2a2 + σ̄)(2a2 + σ̂)
√
a2 + σ̄

√
a2 + σ̂

?
<

σ̄2(a2 + σ̂) + σ̂2(a2 + σ̄) + 8a2(a2 + σ̄)(a2 + σ̂).

Again the terms on both sides of the inequality are > 0. Squaring, expanding and simplifying yields

2σ̄2σ̂2(a2 + σ̄)(a2 + σ̂)
?
< σ̄4(a2 + σ̂)2 + σ̂4(a2 + σ̄)2,

which is satisfied due to [
σ̄2(a2 + σ̂)− σ̂2(a2 + σ̄)

]2
> 0.

As (4.12) holds we further have

∀ε > 0 ∃λ1, p1 : τOL1 (λ1, p1) + ε >
( σ̄
σ̂

)2

,

and hence the upper bound is tight. It also holds that

lim
a→−∞

f(a) = 1,

and thus

∀ε > 0 ∃λ2, p2 : τOL1 (λ2, p2)− ε <
( σ̄
σ̂

)2

.

Alternatively we have σ̄ → σ̂ for µ→ 0 and as a consequence

lim
µ→0

τOL1 (λ, p)→ 1.

Note that for α > 1 the sPoC for both players is > 1. We further want to mention an interesting

observation we made when trying to prove Theorem 4: If we substitute τOL1 (λ, p) by h(a) from (4.8) in

Theorem 4 the associated result clearly gets weaker. But proving this weaker result is gets more involved
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than the proof of Theorem 4. Hence in this case multiplying h(a) by a term > 1 (g(a) from (4.7) to be

precise) facilitates the proof of the stated bounds.

Let us again take a look at two numerical examples. Note that the given bounds are valid for any a.

If player 2 accounts for both cost coefficients of the state value in the same way (µ = 1
2 ), then the sPoC

of player 1 is bounded by 1 < τOL1 (λ, p) <
(

5
4

)2
= 1.5625 for b1 = q1 = r1 = 1, b2 = q2 = r2 = 2. For

µ = 1
2 , b1 = q1 = r1 = 2, b2 = q2 = r2 = 1 we obtain the bounds 0.826 ≈

(
10
11

)2
< τOL1 (λ, p) < 1.

To allow for further analysis, we rewrite the bounds given in Theorem 4 as follows.

Theorem 5. In a two-player scalar DG with open-loop information structure and

λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC of player 1 is bounded by

1 < τOL1 (λ, p) <

(
δ + αβ2

δ + (α+ µ− αµ)β2

)2

, α > 1,(
δ + αβ2

δ + (α+ µ− αµ)β2

)2

< τOL1 (λ, p) < 1, 0 < α < 1,

(4.17)

where

βb1 = b2, β 6= 0, δr1 = r2, δ > 0, αq1 = q2.

All bounds are tight.

Proof. Applying (4.3) to (4.5) and simplifying the resulting expressions gives (4.17).

Next we give bounds on the sPoC for general scalar DGs that depend only on µ and α.

Theorem 6. In a two-player scalar DG with open-loop information structure and

λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC of player 1 is bounded by

1 < τOL1 (λ, p) <

(
α

α+ µ− αµ

)2

, α > 1,(
α

α+ µ− αµ

)2

< τOL1 (λ, p) < 1, 0 < α < 1.

(4.18)

All bounds are tight.

Proof. Using that

z + x

z + y
> 1, x > y > 0, (4.19)

decreases for increasing z 6= 0 yields

1 <

(
δ + αβ2

δ + (α+ µ− αµ)β2

)2

<

(
αβ2

(α+ µ− αµ)β2

)2

, α > 1,(
αβ2

(α+ µ− αµ)β2

)2

<

(
δ + αβ2

δ + (α+ µ− αµ)β2

)2

< 1, 0 < α < 1.

Now cancelling by β2 gives (4.18).
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Hence if player 2 accounts for both cost coefficients of the state value in the same way (µ = 1
2 ), then

the sPoC of player 1 is bounded by 1 < τOL1 (λ) <
(

4
3

)2 ≈ 1.778 for α = 2 and 0.444 ≈
(

2
3

)2
< τOL1 (λ) < 1

for α = 1
2 .

In the next two theorems we deduce bounds on the sPoC for general scalar DGs that depend only on

α and µ respectively.

Theorem 7. In a two-player scalar DG with open-loop information structure the sPoC of player 1 is

bounded by

1 < τOL1 (λ, p) < α2, α > 1,

α2 < τOL1 (λ, p) < 1, 0 < α < 1,

where αq1 = q2. All bounds are tight.

Proof. The first derivative of

α

α+ µ(1− α)
(4.20)

with respect to µ is given by

−α(1− α)

(α+ µ− αµ)2
,

which is < 0 for 0 < α < 1 and > 0 for α > 1. Hence under our constraint µ ∈ (0, 1], (4.20) attains its

maximum at µ = 1 for α > 1 and its minimum at µ = 1 for 0 < α < 1.

Using the above result we can bound the sPoC of player 1 by 1 < τOL1 (λ) < 4 for α = 2 and

0.25 < τOL1 (λ) < 1 for α = 1
2 .

Theorem 8. In a two-player scalar DG with open-loop information structure and

λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC of player 1 is bounded by

1 <τOL1 (λ, p) <

(
1

1− µ

)2

, α > 1,

0 <τOL1 (λ, p) < 1, 0 < α < 1.

All bounds are tight.

Proof. The first derivation of the bounds for the sPoC (stated in (4.18))

b(α) :=

(
α

α+ µ− αµ

)2

,

with respect to α is given by

2αµ

(α+ µ− αµ)3
.

As this term is > 0 for α > 0 and µ > 0

lim
α→∞

b(α) =

(
1

1− µ

)2

,

gives an upper bound on the sPoC for α > 1 and

lim
α→0

b(α) = 0,

gives a lower bound on the sPoC for 0 < α < 1.
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Hence if player 2 accounts for both cost coefficients of the state value in the same way (µ = 1
2 ), then

the sPoC of player 1 is bounded by 1 < τOL1 (λ) < 4 for any α > 1.

In the following theorem we deduce an overall scalar lower bound on the sPoC that depends on δ and

β.

Theorem 9. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC of player 1 is bounded by(
δ

δ + β2

)2

< τOL1 (λ) < 1, 0 < α < 1, (4.21)

where

βb1 = b2, β 6= 0, δr1 = r2, δ > 0, αq1 = q2.

The bounds are tight.

Proof. The first derivation of

δ + αβ2

δ + (α+ µ− αµ)β2
, (4.22)

with respect to α is given by

µ(β4 + δβ2)

(δ + (α+ µ− αµ)β2)2
. (4.23)

(4.23) is > 0 for µ > 0 and δ > 0 and hence the inequality(
δ

δ + µβ2

)2

<

(
δ + αβ2

δ + (α+ µ− αµ)β2

)2

, (4.24)

holds for α > 0. Now the left hand side of (4.24) decreases with increasing µ > 0, hence we obtain

(4.21).

Applying the above result for δ = β = 1 yields 0.25 = 1
4 < τOL1 (λ) < 1 for any α ∈ (0, 1).

The following theorem indicates that we can deduce strengthened overall bounds on the sPoC for

general scalar DGs with a ≤ 0.

Theorem 10. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC for player 1 is bounded by

1 < τOL1 (λ, p) ≤ (δ + αβ2)1.5(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)1.5
, α > 1,

(δ + αβ2)1.5(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)1.5
≤ τOL1 (λ, p) < 1, α ∈ (0, 1),

(4.25)

where

βb1 = b2, β 6= 0, δr1 = r2, δ > 0, αq1 = q2.

All bounds are tight.
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Proof. Using (4.6) together with (4.4) we obtain

f(0) =g(0) · h(0) =

√
σ̄

σ̂
· (σ̂σ̄ + σ1σ̄)

(σ̂σ̄ + σ1σ̂)

=

√
δ + αβ2

δ + (α+ µ− αµ)β2
· (δ + αβ2)(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)
.

Let us w.l.o.g. assume α > 1. (The case 0 < α < 1 can be handled completely analogically.) Then we aim

to show that

f(a)
?
< f(0), a < 0, α > 1.

Using (4.7) together with (4.19) yields

g(a) =

√
a2 + σ̄

a2 + σ̂
<

√
σ̄

σ̂
= g(0), a < 0, α > 1.

Next we examine if

h(a)
?
<
σ̂σ̄ + σ1σ̄

σ̂σ̄ + σ1σ̂
, a < 0, α > 1,

holds. Applying (4.8) and rearranging the terms we obtain[
(
√
a2 + σ̂ − a)2(

√
a2 + σ̄ − a)2 + σ1(

√
a2 + σ̄ − a)2

]
(σ̂σ̄ + σ1σ̂)

?
<
[
(
√
a2 + σ̄ − a)2(

√
a2 + σ̂ − a)2 + σ1(

√
a2 + σ̂ − a)2

]
(σ̂σ̄ + σ1σ̄).

After expanding and some further simplifications, we can split up the inequality above into

(
√
a2 + σ̂ − a)2(

√
a2 + σ̄ − a)2(σ̄ − σ̂)

?
>σ̂σ̄

[
(
√
a2 + σ̄ − a)2 − (

√
a2 + σ̂ − a)2

]
,

(4.26)

and

σ̄(
√
a2 + σ̂ − a)2 ?

> σ̂(
√
a2 + σ̄ − a)2. (4.27)

Expanding and simplifying (4.26) yields

(a2 − 2a
√
a2 + σ̄)(a2 − 2a

√
a2 + σ̂)(σ̄ − σ̂)

+ (2a2σ̄ + 2a2σ̂)(σ̄ − σ̂)− 2a(σ̄2
√
a2 + σ̂ − σ̂2

√
a2 + σ̄)

?
> 0.

The first two addends are > 0 as all involved multiplicands are > 0. The third addend is also > 0, this

can be seen by using (4.15) and (4.16). Expanding and simplifying (4.27) gives

−a(σ̄ − σ̂)
?
> σ̂

√
a2 + σ̄ − σ̄

√
a2 + σ̂.

The left hand side of the inequality is > 0 while the right hand side is < 0 because

σ̄
√
a2 + σ̂ > σ̂

√
a2 + σ̄,

holds. To verify this inequality, we square it, rearrange the terms and divide it by (σ̄ − σ̂) to get

a2(σ̄ + σ̂) > −σ̄σ̂.
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Let us again look at two numerical examples. If player 2 accounts for both cost coefficients of the state

value in the same way (µ = 1
2 ), then the sPoC of player 1 is bounded by 1 < τOL1 (λ, p) < 25

√
10

24
√

8
≈ 1.165

for α = β = δ = 2. For µ = α = β = δ = 1
2 we obtain the bounds 0.915 ≈ 95

√
10

99
√

11
< τOL1 (λ, p) < 1.

Next we state bounds on the sPoC for general scalar DGs with a ≤ 0 that depend only on µ and α.

Theorem 11. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC for player 1 is bounded by

1 <τOL1 (λ) ≤ A, α > 1,

A ≤τOL1 (λ) < 1, 0 < α < 1,
(4.28)

with

A :=

(
6α− µ+ αµ+

√
12α(α+ µ− αµ) + µ2(1− α)2

)1.5

(
6α+ 7µ− 7αµ+

√
12α(α+ µ− αµ) + µ2(1− α)2

)1.5 ·

(
2α+ 3µ− 3αµ+

√
12α(α+ µ− αµ) + µ2(1− α)2

)
(

2α− µ+ αµ+
√

12α(α+ µ− αµ) + µ2(1− α)2
) .

All bounds are tight.

Proof. The numerator of the first derivation of

(z + x)1.5(2z + y)

(2z + x)(z + y)1.5
(4.29)

with respect to z is given by

(z + x)0.5(z + y)0.5 [(5z + 2x+ 1.5y)(z + y)(2z + x)− (5z + 2y + 1.5x)·
(z + x)(2z + y)] = (z + x)0.5(z + y)0.5(y − x)(4z2 + z(x+ y)− 0.5xy).

Hence

z∗ =
−(x+ y)±

√
x2 + 10xy + y2

8
, (4.30)

describes the extreme values of (4.29). The second derivation of (4.29) with respect to z is (after some
simplifications) given by

(y − x)
[
0.5(z + x)−0.5(4z2 + z(x+ y)− 0.5xy) + (z + x)0.5(8z + x+ y)

]
(2z + x)4(z + y)5

−

(z + x)0.5(y − x)(4z2 + z(x+ y)− 0.5xy)(4(2z + x)(z + y)2.5 + 2.5(z + y)1.5(2z + x)2

(2z + x)4(z + y)5
.

For z∗ from (4.30) the above expression reduces to

(y − x)(z + x)0.5(8z + x+ y)

(2z + x)4(z + y)5
(4.31)

as

4 (z∗)
2

+ z∗(x+ y)− 0.5xy = 0,
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holds. Now (4.31) is > 0 for z∗ (with positive sign) from (4.30), if and only if y− x > 0. Setting x := αβ2

and y := (α + µ − αµ)β2 we have y > x for 0 < α < 1 and x > y for α > 1. Hence for fixed α, β and µ

the fraction from (4.25) (as a ≤ 0, we can work with the bounds for the sPoC (4.25) stated in Theorem

10) attains its minimum for 0 < α < 1 and its maximum for α > 1 at

δ∗ =
β2

8

(
αµ− 2α− µ+

√
12(α+ µ− αµ) + µ2(1− α2)

)
. (4.32)

Applying (4.32) to (4.25), canceling the resulting expression by β5 and simplifying the terms yields (4.28).

Hence if player 2 accounts for both cost coefficients of the state value in the same way (µ = 1
2 ), then

the sPoC of player 1 is bounded by 1 < τOL1 (λ) < 1.167 for α = 2 and 0.804 < τOL1 (λ) < 1 for α = 1
2 .

Next we state additional bounds on the sPoC for general scalar DGs with a ≤ 0 that depend only on µ

and α. These additional bounds are weaker than the ones from Theorem 11 but they are given by easier

expressions. Thus we will make use of them for deducing further bounds later on.

Theorem 12. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC for player 1 is bounded by

1 <τOL1 (λ) ≤ B, α > 1,

B ≤τOL1 (λ) < 1, 0 < α < 1,
(4.33)

with

B :=

√
α

α+ µ− αµ
·
√

2(3α+ µ− αµ) + 4
√
α(α+ µ− αµ)

√
2(3α+ 2µ− 2αµ) + 4

√
α(α+ µ− αµ)

,

Proof. As a ≤ 0, we can work with the bounds for the sPoC (4.25) stated in Theorem 10. Using (4.19)

yields

1 <

√
δ + αβ2

δ + (α+ µ− αµ)β2
<

√
αβ2

(α+ µ− αµ)β2
, α > 1, δ > 0,√

αβ2

(α+ µ− αµ)β2
<

√
δ + αβ2

δ + (α+ µ− αµ)β2
< 1, 0 < α < 1, δ > 0.

For fixed α, β and µ the fraction

(δ + αβ2)(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)
,

attains its minimum for 0 < α < 1 and its maximum for α > 1 at

δ∗ =
β2

√
2

√
α(α+ µ− αµ),

To see this, we examine the numerator of the first derivation of

(z + x)(2z + y)

(2z + x)(z + y)
, (4.34)
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with respect to z that is given by

(4z + 2x+ y)(2z2 + 2zy + zx+ xy)− (4z + 2y + x)

· (2z2 + 2zx+ zy + xy) = 2z2(y − x)− xy(y − x).

Hence

z∗ = ±
√
xy

2
, (4.35)

describes the extreme values of (4.34). The second derivation of (4.34) with respect to z is (after some

simplifications) given by

4z(2z + x)(2z + y)(y − x)− (y − x)(2z2 − xy)(8z + 4y + 2x)

(2z + x)3(z + y)3
. (4.36)

The second addend of the numerator of (4.36) is 0 as 2 (z∗)
2

= xy holds for z∗ from (4.35). Hence (4.36)

is > 0 for the z∗ with positive sign from (4.35), if and only if y − x > 0. Now setting x := αβ2 and

y := (α+ µ− αµ)β2, we have y > x for 0 < α < 1 and x > y for α > 1.

In summary we obtain (after applying some standard operations to simplify the terms)

1 < τOL1 (λ) ≤

√
αβ2

(α+ µ− αµ)β2
·
β4(
√
α(α+ µ− αµ) +

√
2α)

β4(2
√
α(α+ µ− αµ) +

√
2α)
·

(2
√
α(α+ µ− αµ) +

√
2(α+ µ− αµ))

(
√
α(α+ µ− αµ) +

√
2(α+ µ− αµ))

, α > 1,

1 > τOL1 (λ) ≥

√
αβ2

(α+ µ− αµ)β2
·
β4(
√
α(α+ µ− αµ) +

√
2α)

β4(2
√
α(α+ µ− αµ) +

√
2α)
·

(2
√
α(α+ µ− αµ) +

√
2(α+ µ− αµ))

(
√
α(α+ µ− αµ) +

√
2(α+ µ− αµ))

, 0 < α < 1.

Cancelling the above fractions by β5
√
α(α+ µ− αµ) and expanding yields (4.33).

Let us again look at two numerical examples. If player 2 accounts for both cost coefficients of the state

value in the same way (µ = 1
2 ), then the sPoC of player 1 is bounded by 1 < τOL1 (λ) ≤ 11

√
2+8
√

3√
65+12

≈ 1.213

for α = 2 and 0.762 ≈ 7+4
√

3
4
√

6+6
√

2
≤ τOL1 (λ) < 1 for α = 1

2 .

Next we give overall bounds on the sPoC for general scalar DGs with a ≤ 0 that depend only on α.

Theorem 13. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC for player 1 is bounded by

1 < τOL1 (λ) ≤
√

2α(2α+ 1) + 4α√
2(α+ 2) + 4

√
α
, α > 1,

√
2α(2α+ 1) + 4α√
2(α+ 2) + 4

√
α
≤ τOL1 (λ) < 1, 0 < α < 1.

(4.37)

Proof. Under the constraint µ ∈ (0, 1] the term (4.20) attains its maximum at µ = 1 for α > 1 and its

minimum at µ = 1 for 0 < α < 1. (For details see the proof of Theorem 7.) Hence the inequalities

√
α <

√
α

α+ µ− αµ
, 0 < α < 1, 0 < µ ≤ 1. (4.38a)



24 CHAPTER 4. BOUNDS FOR THE PRICE OF COOPERATION

and √
α

α+ µ− αµ
<
√
α, α > 1, 0 < µ ≤ 1, (4.38b)

hold. Next we take a look at the term

f(α, µ) :=

√
2(3α+ µ− αµ) + 4

√
α(α+ µ− αµ)

√
2(3α+ 2µ− 2αµ) + 4

√
α(α+ µ− αµ)

. (4.39)

The first derivation of (4.39) with respect to µ is (after some simplifications)

2α(α− 1)
(√

2α(2− µ) +
√

2µ+ 3
√
α(α+ µ− αµ)

)
√
α(α+ µ− αµ)

(√
2α(3− 2µ) + 2

√
2µ+ 4

√
α(α+ µ− αµ)

)2 .

This term is > 0 for α > 1, 0 < µ ≤ 1 and < 0 for 0 < α < 1, 0 < µ ≤ 1. Thus for fixed α > 1

the function f(α, µ) is strictly monotonically increasing for increasing µ ∈ (0, 1]. For fixed α ∈ (0, 1)

the function f(α, µ) is strictly monotonically decreasing for increasing µ ∈ (0, 1)]. Hence we obtain the

following bounds

f(α, µ) ≤
√

2(2α+ 1) + 4
√
α√

2(α+ 2) + 4
√
α
, α > 1,

f(α, µ) ≥
√

2(2α+ 1) + 4
√
α√

2(α+ 2) + 4
√
α
, 0 < α < 1.

(4.40)

Applying the results from (4.38) and (4.40) to the bounds from Theorem 12 (that we can use due to a ≤ 0)

finally gives (4.37).

Applying the above result for α = 2 we find that the sPoC of player 1 is bounded by 1 < τOL1 (λ) ≤√
2 9

8 ≈ 1.591 for any µ ∈ (0, 1). Setting α = 1
2 we have 0.629 ≈ 4

√
2

9 ≤ τOL1 (λ) < 1.

In the following theorem we deduce overall lower bounds on the sPoC for general scalar DGs with

a ≤ 0 that depend only on µ.

Theorem 14. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1, αq1 = q2,

the sPoC for player 1 is bounded by

1 < τOL1 (λ) <

√
1

1− µ
·
√

2(3− µ) + 4
√

1− µ√
2(3− 2µ) + 4

√
1− µ

, α > 1. (4.41)

Proof. The first derivation of (4.20) with respect to α is given by

µ

(α+ µ− αµ)2
,

which is > 0 for µ > 0. Hence the inequality√
α

α+ µ− αµ
<

√
1

1− µ
, 0 < µ ≤ 1, (4.42)

holds. The first derivation of (4.39) with respect to α is (after some simplifications)

2µ
(√

2α(2− µ) +
√

2µ+ 3
√
α(α+ µ− αµ)

)
√
α(α+ µ− αµ)

(√
2α(3− 2µ) + 2

√
2µ+ 4

√
α(α+ µ− αµ)

)2 .
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This term is > 0 for α > 0 and µ ∈ (0, 1]. Thus it increases for increasing α > 0 and we obtain

f(α, µ) <

√
2(3− µ) + 4

√
1− µ√

2(3− 2µ) + 4
√

1− µ
, α > 0, 0 < µ ≤ 1. (4.43)

Applying the results from (4.42) and (4.43) to the bounds from Theorem 12 (that we can use due to a ≤ 0)

finally gives (4.41).

For µ = 1
2 the sPoC of player 1 is bounded by 1 < τOL1 (λ) <

√
2 9

8 ≈ 1.591 for any a ≤ 0 and any

α > 1.

In the following theorem we deduce an overall scalar lower bound for the sPoC for scalar DGs with

a ≤ 0 that depends on δ and β.

Theorem 15. In a two-player scalar DGs with open-loop information structure and

a ≤ 0, λ1 =

(
1

0

)
, λ2 =

(
µ

1− µ

)
, 0 < µ ≤ 1,

the sPoC of player 1 is bounded by√
δ

δ + β2

2δ + β2

2(δ + β2)
< τOL1 (λ) < 1, 0 < α < 1, (4.44)

where

βb1 = b2, β 6= 0, δr1 = r2, δ > 0, αq1 = q2.

Proof. As a ≤ 0 we can work with the bounds for the sPoC stated in Theorem 10. The first derivation of

(4.22) with respect to α is > 0 for µ > 0 and δ > 0 (for details see the proof of Theorem 9). Hence the

inequality √
δ

δ + µβ2
<

√
δ + αβ2

δ + (α+ µ− αµ)β2
, (4.45)

holds for µ > 0 and δ > 0. Next observe that the first derivation of

t(α) =
(δ + αβ2)(2δ + (α+ µ− αµ)β2)

(2δ + αβ2)(δ + (α+ µ− αµ)β2)
,

with respect to α yields

µ(1− α)β4[2α(1− µ) + µ)] + µαβ4[α(1− µ) + µ] + 3µβ2δ + 2µδ2

(2δ + αβ2)2(δ + (α+ µ− αµ)β2)2
> 0,

0 < α < 1, µ ∈ (0, 1], δ > 0.

Hence the inequality

2δ + µβ2

2(δ + µβ2)
< t(α), 0 < α < 1, (4.46)

holds for µ ∈ (0, 1] and δ > 0. For δ > 0 the left hand sides of (4.45) and (4.46) decrease for increasing µ.

Setting µ = 1 and combining (4.45) and (4.46) finally yields (4.44).

Applying the above bounds for δ = β = 1 gives 0.530 ≈ 3
4
√

2
< τOL1 (λ) < 1 for any α ∈ (0, 1).

We can further generalize part of the results for two-player scalar linear quadratic DGs to N -player

scalar linear quadratic DGs. Let us first state the extensions of Corollary 2 and Theorem 4.
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Theorem 16. In an N -player scalar DGs with open-loop information structure and

λ1 = e1, λi =

N∑
j=1

µi,jej ,

N∑
j=1

µi,j = 1, i ∈ {2, . . . , N},

the sPoC of player 1 is given by

τOL1 (λ) =
k̂?1
k?1

=

√
a2 + σ̄

[
(
√
a2 + σ̄ − a)2

(
(
√
a2 + σ̂ − a)2 + σ1

)]
√
a2 + σ̂

[
(
√
a2 + σ̂ − a)2

(
(
√
a2 + σ̄ − a)2 + σ1

)] , (4.47)

and can be bounded by

1 < τOL1 (λ, p) <
( σ̄
σ̂

)2

,

N∑
i=2

b2i
∑N
j=1 µi,jqj

ri
<

N∑
i=2

b2i qi
ri

,

( σ̄
σ̂

)2

< τOL1 (λ, p) < 1,

N∑
i=2

b2i
∑N
j=1 µi,jqj

ri
>

N∑
i=2

b2i qi
ri

,

(4.48)

where

σ̂ =
b21q1

r1
+

N∑
i=2

b2i
∑N
j=1 µi,jqj

ri
.

and ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere. All bounds are tight.

Proof. The proof can be done analogically to the proofs of Corollary 2 and Theorem 4. Note that the

conditions on α are replaced by the more complex conditions in (4.48) that now ensure σ̄ < σ̂ and σ̄ > σ̂

respectively.

Let us again look at two numerical examples. In order to evaluate the effect of the number of players

on the sPoC, we reuse the numbers from the examples related to Corollary 2 and Theorem 4 and double

the number of cooperating players.

Hence we obtain the bounds 1 < τOL1 (λ, p) <
(

9
7

)2 ≈ 1.653 for b1 = q1 = r1 = 1, b2 = b3 = q2 = q3 =

r2 = r3 = 2, µ2,1 = µ2,2 = µ3,1 = µ3,2 = 1
2 . Further setting a = 2 yields τOL1 (λ, p) ≈ 1.235.

Using the data b1 = q1 = r1 = 2, b2 = b3 = q2 = q3 = r2 = r3 = 1, µ2,1 = µ2,2 = µ3,1 = µ3,3 = 1
2 , we

have 0.735 ≈
(

6
7

)2
< τOL1 (λ, p) < 1. Further setting a = 2 yields τOL1 (λ, p) ≈ 0.864.

Next we generalize the results of Theorem 3 and Theorem 10.

Theorem 17. In an N -player scalar DGs with open-loop information structure and

a ≤ 0, λ1 = e1, λi =

N∑
j=1

µi,jej ,

N∑
j=1

µi,j = 1, i ∈ {2, . . . , N},

the sPoC of player 1 is bounded by

1 < τOL1 (λ, p) ≤ C,

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i∑N

i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

> 1,

C ≤ τOL1 (λ, p) < 1,

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i∑N

i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

< 1,

(4.49)
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where

C :=

[∏N
i=2 δi +

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i

]1.5

[
2
∏N
i=2 δi +

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ2

i

] ·
[
2
∏N
i=2 δi +

∑N
i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

]
[∏N

i=2 δi +
∑N
i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

]1.5 ,

βib1 = bi, βi 6= 0, δir1 = ri, δi > 0, αiq1 = qi, α > 0, i ∈ {2, . . . , N}.

and ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere. The bounds are tight for a = 0.

Proof. For the given data σ̄ and σ̂ are easily obtained as

σ̄ =

(
1 +

N∑
i=2

αiβ
2
i

δi

)
σ1, σ̂ =

1 +

N∑
i=2

(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

δi

σ1, (4.50)

Applying (4.50) to (4.47) with a set to zero and doing some basic transformations (similar to the ones in

(4.4)) yields τOL1 (λ, p) = C for a = 0. Then continuing analogically to the proof of Theorem 10 yields

(4.49).

Hence we obtain the bounds 1 < τOL1 (λ, p) < 36
√

9
35
√

7
≈ 1.166 for α2 = α3 = β2 = β3 = δ2 = δ3 =

2, µ2,1 = µ2,2 = µ3,1 = µ3,2 = 1
2 . Using the data µ2,1 = µ2,2 = µ3,1 = µ3,3 = α2 = α3 = β2 = β3 = δ2 =

δ3 = 1
2 we have 0.873 ≈ 66

√
3

35
√

7
< τOL1 (λ, p) < 1.

Finally we elaborate the counterpart of Theorem 5 for N players.

Theorem 18. In an N -player scalar DGs with open-loop information structure and

λ1 = e1, λi =

N∑
j=1

µi,jej ,

N∑
j=1

µi,j = 1, i ∈ {2, . . . , N},

the sPoC of player 1 is bounded by

1 < τOL1 (λ, p) < D2,

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i∑N

i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

> 1,

D2 < τOL1 (λ, p) < 1,

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i∑N

i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

< 1,

(4.51)

where

D :=

∏N
i=2 δi +

∑N
i=2

(∏N
j=2,
j 6=i

δj

)
αiβ

2
i∏N

i=2 δi +
∑N
i=2

(∏N
j=2,
j 6=i

δj

)(
µi,1 +

∑n
j=2 µi,jαj

)
β2
i

,

βib1 = bi, βi 6= 0, δir1 = ri, δi > 0, αiq1 = qi, α > 0, i ∈ {2, . . . , N}.

All bounds are tight.
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Proof. Applying (4.50) to the bounds from Theorem 16 and simplifying the resulting expressions gives

(4.51).

Hence we obtain the bounds 1 < τOL1 (λ, p) <
(

9
7

)2 ≈ 1.653 for α2 = α3 = β2 = β3 = δ2 = δ3 =

2, µ2,1 = µ2,2 = µ3,1 = µ3,2 = 1
2 . Using the data µ2,1 = µ2,2 = µ3,1 = µ3,3 = α2 = α3 = β2 = β3 = δ2 =

δ3 = 1
2 we have 0.735 ≈

(
6
7

)2
< τOL1 (λ, p) < 1.



Chapter 5

Conclusion

In this thesis we argued that the price of cooperation proposed in [8] is hardly tractable even for very

simple differential games. As an alternative we introduced the simple price of cooperation that measures

the benefit or loss of a player due to altruistic behavior when he cannot observe the actions taken by the

other players. This means that the cooperating players only take into account the costs of the other players

that result from their state variables (and ignore the costs resulting from the control variables of the other

players). This assumption matches nicely with the fact that in scalar linear quadratic differential games

the players are not interested in the control actions pursued by the other players. We deduced several

(tight) bounds for the simple price of cooperation for a variety of scalar linear quadratic differential games

with 2 and N players, respectively.

Additionally we discussed errors occurring in some proofs in [8] and pointed out the consequences of

theses errors for some of the main results of the corresponding paper. We argued that the asymptotic

results associated to prices of anarchy and information in [8] cannot be maintained.

As cooperation, information and altruistic behavior are key concepts for the law, we think that our

thesis provides a valuable contribution to the theory of law. In summary we improved the methods to

measure the effects of cooperation and information in a dynamic setting.

Future promising work could be to extend the results for the prices of anarchy, information and co-

operation for scalar linear-quadratic differential games and to other classes of games like non-scalar ones.

Furthermore transferring other measures like the price of leadership to a dynamic setting could be a fruit-

ful area of research. Finally applying the results obtained to specific models (e.g. from communication

networks and economics) would be another worthwhile direction of research.
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